Nonthermal Electron Bernstein Emission in Nstx-like Discharges
نویسندگان
چکیده
In overdense plasma for which the plasma frequency exceeds the cyclotron frequency, X-mode, nearperpendicular cyclotron emission does not propagate to the outboard plasma edge. However, under these conditions it remains possible for electron Bernstein waves (EBWs) to transmit emitted radiation from central plasma to the plasma exterior via a mode conversion to electromagnetic waves near the plasma edge. GENRAY is an all-frequencies, three-dimensional ray-tracing code and also calculates EBW emission (EBWE) from thermal or nonthermal relativistic distributions. The numerical methods are based on the earlier HORACE circular plasma code (R.W. Harvey et al., Proc. 7th Joint Workshop and International Atomic Energy Agency Technical Committee Meeting on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating, Hefei, China, 1989), generalized to noncircular plasmas and to electromagnetic EBWs, including a parallel refractive index greater than 1. Emission and absorption are calculated on an array of points along EBW rays emanating from the antenna, and the radiation transport equation is backsolved along the EBW rays to the antenna. Hot plasma dispersion is used along with a relativistic calculation of the thermal or nonthermal emission and absorption. This paper describes the calculation and reports new results for nonthermal EBWE. Along with detailed numerical analysis, EBWE can be used to measure both thermal and nonthermal properties of the electron distribution function.
منابع مشابه
Electron Bernstein Wave Studies: Emission and Absorption with Nonthermal Distributions; Current Drive; Delta-F Particle in Cell Simulations
Electron Bernstein waves (EBW) are suitable for heating, current drive, and radiation temperature measurements of overdense plasma, ωpe>>ωce , in spherical torus devices. In NSTX, design of a multi-megawatt EBW current drive system is supported by experimental measurements and computations of obliquely viewing, dual-polarization EBW emission (EBE) radiometry. Efficient EBW coupling, 80±20% at 1...
متن کاملPsfc/ja-00-41 Heating and Current Drive by Electron Bernstein Waves in Nstx and Mast-type Plasmas
The high β operating regime of spherical tokamaks (ST), such as in NSTX and MAST, make them attractive fusion devices. To attain the high β’s, there is a need to heat and to drive currents in ST plasmas. While ST plasmas are overdense to conventional electron cyclotron (EC) waves, electron Bernstein waves (EBW) offer an attractive possibility both for heating and for driving plasma currents. We...
متن کاملCoupled Ray-Tracing and Fokker-Planck EBW Modeling for Spherical Tokamaks
The AMR (Antenna—Mode-conversion—Ray-tracing) code [1, 2] has been recently coupled with the LUKE [3] Fokker-Planck code. This modeling suite is capable of complex simulations of electron Bernstein wave (EBW) emission, heating and current drive. We employ these codes to study EBW heating and current drive performance under spherical tokamak (ST) configurations—typical NSTX discharges are employ...
متن کاملMode-converted Electron Bernstein Waves for Heating and Current Drive in Nstx
The power coupled to electron Bernstein waves in a triplet mode conversion resonator from a fast X-mode at the plasma edge in NSTX is shown to be > 80% for fc, < f < 2fc,. The EBW damping in the plasma is strong and localized and, thus, should be useful for heating, current drive, or profile control.
متن کاملElectron Bernstein Wave Research on CDX-U and NSTX
Mode-converted electron Bernstein waves (EBWs) potentially allow the measurement of local electron temperature (Te) and the implementation of local heating and current drive in spherical torus (ST) devices, which are not directly accessible to low harmonic electron cyclotron waves. This paper reports on the measurement of X-mode radiation mode-converted from EBWs observed normal to the magnetic...
متن کامل